

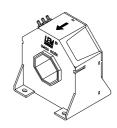
Current Transducer LT 1005-S/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			1000			
I _P	Primary current, measuring range @ ± 24 V		0 ± 2000			Α	
\mathbf{R}_{M}	Measuring resistance @		$T_A = 70^{\circ}C$		$T_A = 85^{\circ}C$;
			$R_{\text{M min}}$	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	R _{M min}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
	with ± 15 V	@ \pm 1000 A max	0	24	0	21	Ω
		@ \pm 1500 A _{max}	0	7	0	4	Ω
	with ± 24 V	@ ± 1000 A max	5	58	10	55	Ω
		@ $\pm 2000 A_{max}$	5	16	10	13	Ω
I _{SN}	Secondary nominal r.m.s. current			250)		mΑ
K _N	Conversion ratio			1:	4000		
v c	Supply voltage (± 5 %)			± 1	5 24	1	V
I _C	Current consumption			30	(@ ±24	V)+ I _S	mA
V _d	R.m.s. voltage for AC isola	ation test, 50 Hz, 1 r	mn	12		Ü	kV

Accuracy - Dynamic performance data


X _G	Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity error		± 0.4 < 0.1		% %
I _O	Offset current @ $\mathbf{I}_{\mathrm{p}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O}	- 40°C 25°C - 25°C + 85°C			mA mA mA
t _r di/dt f	Response time 1) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	50	μs A/μs kHz

General data

T_A	Ambient operating temperature		- 40 + 85	°C
	Ambient storage temperature		- 45 + 95	°C
R_s	Secondary coil resistance	@ $T_A = 70^{\circ}C$	26	Ω
Ü		@ $T_A = 85^{\circ}C$	29	Ω
m	Mass		850	g
	Standards		EN 50155	

Note: 1) With a di/dt of 100 A/µs.

$I_{DN} = 1000 A$

Features

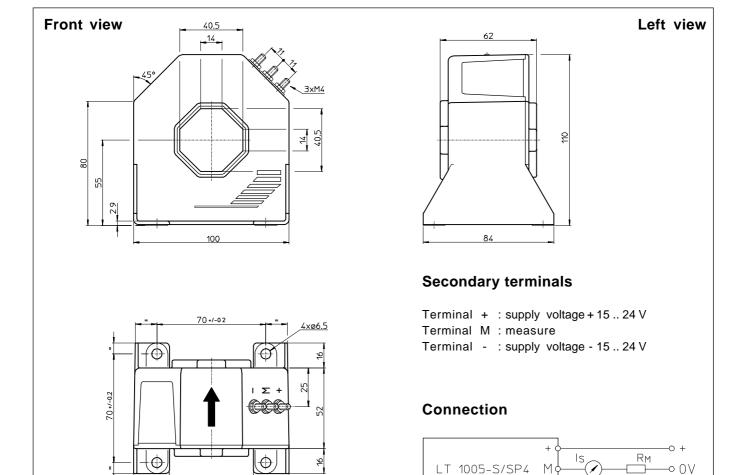
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $\mathbf{K}_{N} = 1:4000$
- $V_d = 12 \, kV$
- $T_A = -40^{\circ}C ... + 85^{\circ}C$
- Potted
- Connection to secondary circuit on M4 threaded studs
- Personalized label
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070807/9

Dimensions LT 1005-S/SP4 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Top view

• Transducer fastening

Fastening torque maxi

- Primary through-hole
- Connection of secondary Fastening torque
- ± 1 mm
- 4 holes Ø 6.5 mm
- 4 M6 steel screws
- 5 Nm or 3.69 Lb Ft
- 40.5 x 40.5 mm
- M4 threaded studs
- 1.2 Nm or .88 Lb Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

070807/9